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I. INTRODUCTION

It has been known for over 4Q years that glass targets are unusually
effective in stopping shaped-charge jets. Studies of this effectiveness
were made during and after World War I1.1 These studies established the
principles of defense against shaped-charge jets using glass. Neverthe-
less, little is known about the physics and chemistry associated with the
penetration process in glass.

This report describes some experiments made to measure dynamic
stresses in glass in the viecinity of a penetrating jet. Strairn-compensated
stress gages and simultaneous hizh-speed framing camera photogranhs were
used for this purpcse. These 2xperiments are part of a larger effort to
understand the fundamentals of the jet penetration process in glass and
glass-like materials,2 The overall work also includes the use of flash
radiography to observe the on-golng pen:tration, and target recovery to
observe the materizl after penetration.

II. EXPERIMENTAL PROCEDURE

The shaped-charge jets used in these experiments were obtained using a
35 mm diameter conical copper liner with a wall thickness of 1.57 mm and a
cone angle of 45 degrees. The explosive used was Coumposition B. Figure 1
is a drawing of this unconfined shaped charge. When fired at a standof. of
two cone diameters the jet penetrated four cone diameters in stacked 25 mm
thick rolled steel plates (Rockwell hardness B81)., The jet tip velocity
was €.8 km/s.

The targets consisted of stacked layers of float glass (Density = 2500
kg/m~). The glass layers were either 25.4 mm or 19.1 mm thick and were
approximately 150 mm squarc. They were stacked either perpendicular to the
Jet path or parallel to the jet path. The layers were bonded with epoxy
cement (Hysol Epoxy-Patch 608 (*)) while clamped in a press. Various cover
plates wsre used. The cover plates were either rolled homogeneous armor
(RHA) or polymethylmethacralate (PMMA), or a combination of the two of dif-
ferent thicknesses. Table 1 gives details of the various thicknesses,
orientations and materi. 1s used in each experiment. Figures 2 and 3 show
drawirngs of typical target configurations, The shaped charges were fired
at a standoff of two ocone diameters above the cover plates.

Strain-compensated stress gages (Dynasen Mod. Mn/Cn U-50-EK (¥#%)) were
used to measure stresses during jet penetration. These gages oconsist of
two separate interlaced foil grids encased in a polyimide plastic film,

One of the grids is made of manganin and is used ' > measure stress, The
other is made of constantan and is used to measurc strain. Both grids are
5 mm square and the gages are 0,127 mm thick, The measured strain is used
to correct the stress measurements., More details on how the data is
reduced is glven in the next section.

#Hysol Division, The Dexter Corporation, Olean, NY 14760
##Dynasen Ino., Goleta, CA 93017
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Figure 1.

Shaped Churge Used in Penetration Experiments,
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The gages were bonded between the layers of glass in shallow slots
approximately 0.38 mm deep etched in the glass with hydrofluoric acid. The
gages were placed between two layers of polytetrafluoroethylene each
0.127 mm thick to provect them from the fracturing glass. The gages and
the plastic layers were bonded in the slots with the same epoxy cement used
for bonding the glass layers. Figure U4 shows a drawing of the usual gage
placement., The gage leads which were 95 mm long protruded from the sides
of the layered targets. When the glass layers were parallel to the jJet
path the gage grius were also parallel, Likewise, when the layers were
perpendicular the grids were perpendicular to the jet path. Table 1 also
includes particulars on gage placement in each experiment. Test Wo. 1% a1d
Test No. 16 were 1run without slots in the glass and the offset spaces
caused by the thicimess of the gage were filled with plastic film and epoxy
cement. This was done to see if the slots affected the gage signals.

Gupta and Gupta3 have reported such disturbance in very strong materlials.

The gages were attached to 93 ohm RG-62u coaxial cables which were
connected to bridge circuits similar to these used by Rapacki.4 The cir-
cults were modified to be used with the 50 ohm Dynasen gages instead of the
120 ohm gages used by Rapacki. The signals were recorded on digital oscil-
loscopes (Nicolet 2090 with 204A plug-in (*)). The oscilloscopes were
triggered by a circuit using a make-switch made of brass foils separated by
a thin plastic film which was bonded to the front surface of the target.

The impinging jet closed the switch gap circuit and triggered a delay gen-
erator that subsequently triggered the oscilloscopes.

For some of the experiuients simultaneous framing camera photographs
were made during jet penetration. A Cordin Model 10-010 camera was used
(%*%), The glass targets were back-lit with an exploding tungsten wire
placed near the focus of & plastic Fresnsl lens. When the glass layers
were parallel to the jet path, a clear optical patih was perpendicular to
the layers. When the layers were perpendicular to the jet path, cover
plates of clear PMMA 6.35 mm thick were bonded to opposite target sides
with epoxy cement to make a clear optical path for the photographs, Fig-
ures 2 and 3 show the optical setup.

III. RESULTS

The data from the two signals obtained from each ga#e were reduced in
a manner similar to that used by Rapaokio4 That 18, calibrations were made
of each circult with known dummy gages inserted in the lines instead of the
actual gage. Signals from known changes in resistance were then used to
determine the circuit constants. These constants along with the known
bridge and cable resistances were used to calculate the resistance of each
grid at each simultaneous time step of the signals.

To caloulate the stress in the glass for each time step it was assumed
that the resistance of the constantan grid was not affected by the stress

#Nicolet Oscilloscope Division, Madison, wI 53711
#¥#The Cordin Company, Salt Lake City, UT
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/ /' /~GRGE LEARDS
// ‘//
VA GLASS
f 7 |
//
S GLASS
/
/
L
GRGE GLASS
ENGTH (MM) 5.0 150
WIDTH  (MM) 5.0 150
THICKNESS (MM) 2.126  25.4

LENGTH OF THE GRGE LERDS = 35 MM

Figure 4. Gage Placement in Shallow Slot.




NOTLIONOD 1S3L 't J1avl
AN OL°CL = 31Vid
INO¥4 3HL ANV 3O8VHO (J3dVHS NIImi3g 3JONVLISId JJOANVLS

08°0S VW 09°10L |ON MVINJOIONIdY3d| + 0¥°6Z| 9l
0S°€9 |[ON

0¥°GZ VNN Sy ¥¥ S3A | ¥7INDIONAdYN3d| ¢ GO'6L| Gl
Sy ¥¥ |ON

ov'Ge VAN 05°¢9 S3A | YVINDOIAON3d¥3d| ¢ SO'6L| Vi
g9 QT ! S3A

08°0% VNN GZ'G6 S3A | ¥YINOION3dy3d| + | o¥'sz| Ol
00°/CL S3A

08°0S VNN 09°L0L S3A | ¥YINOIONAdY3d| ¥ ov'sz| 6

080G | VWANJ/VHY| G670} S3A T3 Ve S o¥'sc| 8

8} alors VH G528 S3A JITIVEV S ov'se| S

o alors VHY 029/ S3A J3TIVHV S ov'se| +

0v'ST VHY 02'9L S3A | ¥VINDOIONIAdY3d] S o¥'SZ| ¢

(WN)3LVd 137 ONIWOONI

1NO¥A 3HL OL

(W) NOY4 [ON! S3A 39V ANV (W)

MOIHL | IVIM3LVYA | NOILVDO1| LO1S 3HL 1394vi 40 "ON | MOIHL| "ON

31V1d LNO¥ 39v9 NI 39vD NOILVLNINO [S3LVId SSVI9 1S3l

13

L AL

AR

i

"A}:a'h ._; -{q .

TR

.
»

e
FORRAN
A% IS I W

N St et
. - - -
O AR

r
AN

A

R ORI

- R
AN

P
y
e,

W



&

ﬁé&{-

$
&
34

field that +wurrounded both it and the manganin grid. It was further
assumed that the strain of the manganin grid was the same as in the con-
stantan grid. Finally it was assumed that the stress in the glass was the
same as that in the manganin.

The strain for each ftime step was calculated using the equaticn
.5 5

ST
Here

-1 + (RC/ROC)

ST = strain in the constantan grid
RC = resistance of the constantan grid
ROC - the initial resistance of the constantan grid,

To calculate the stress, the resistance change associated with the
strain in the manganin must first be subtracted from the total resistance
anange. In order to do this the strain gage factor for the manganin grid
was determined from a separate static experiment. A strain-compensated
strecs gage was mounted on an aluminum alloy plate along with conventional
strain gages (Micromeasurements EP-08-G62TT-120 (*)). This plate was
pulled in an universal testing machine. The data showed that the manganin
grid had a gage factor of 0.7 to a strain of 0.5%. Above 0.5% strain the
manganin deformed plastically and the gage factor became the same as for
the constantan grid, chat is, 2+ST.5 Figure 5 is a plot of the measured
apparent gage factor along wich a curve calculated using a gage factor of
0.7 for the elastic strain and unloading, and a factor of 2+ST for the
plastic strain. The a»parent gage factor G.F.,, is defined as

G.F. = DRG/(ROG x ST).
Where

DRG the change in gage resistance,

1]

and

ROG = the initial gage resistance,

The resistance change in the manganin due to the strain was therefore
calculated by using the following equations.

For -0.005 < ST < 0.005
DRMS = 0.7 x ST x ROM.

For ST > 0.005
DRMS = (2+ST-0.005) x (ST-0.005) x (1+0.7x0.005) x ROM +
(0.7%x0.0035) x ROM
= (1.995+ST) x (ST-0.005) x 1.0035 x ROM + 0.0035 x ROM

For ST < ~.005
DRMS = (2.005+ST) x (ST+0.005) x 0.9965 x ROM - 0.0035 x ROM

Here
DRMS = the change in resistance of the manganin grid due to strain
ROM = the initial resistance of the manganin grid.

#Measurements Group, Raleigh, NC 27611
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. The stress in the manganin was then calculated using a cubic fit to
b;"='ﬁ ' the data of Charest.® This equation is

!,f"§' o S = 53.19 x (DRM/RO) - 159.91 x (DRM/RO)2 + 493.16 x (DRM/RO)3.
§, K. Where

! i S = stress in the manganin (gigapascals)

& DRM = DRMT - DRMS

ﬁ.. RO = ROM + DRMS

¥ g - and

h‘*ﬁf“-' DRMT = the total resistance change in the manganin.

_ Figures 6 to 13 show results obtained from this analysis. Compressive
g stress is positive. Figures 14 and 15 show a series of framing camera pho-
13 tographs. In the photographs of Figure 14 the glass layers are parallel to
the jet path. There are 2 wicroseconds between frames. Figure 15 shows
the results when the layers are perpendicular to the path, There are 1.33
i microseconds between frames.

. A IV. DISCUSSION

The stress measurements reported here were obtained under narticularly
i adverse physical conditions. It was learned in preliminary experiments

] that the foil gages and their leads had to be protected from a hostile
environment which included fracturing glass. The layers of polytetra-
flouroethylene, used for this protection, restricted the mechanical
_ response of the gages especlally to the initial sharply rising shock waves,
N The response was further restricted by the electronic bandwidth of the
recording equipment so that submicrosecond changes in either stress or
strain could not be tracked.

R o 2 et o
e

The gages were approximately 19 mm to the side of the jet path for
perpendicnlar shots and 12.7 mm from the path for parallel shots. As can
be seen the stresses umeasured did not exceed approximately 0.3 gigapascals
until the gages were on the verge of destruction from the fracturing glass.

. The strain in most of the shots did not contribute significantly to the
. stress compensation until 3 to 4 microseconds after the start of the stress
) ; signals. The usual signal showed two compressive peaks followed by either
y; tension or compression.

T PRI W
\

-"__ o .' P - .
©

N

Although unslotted gages did not show these distinct peaks the meas-
ured stress levels were approximately the same as for slotted gages (see
- i Figures 12 and 13). In most cases the gages started to fail before or near

o Jet arrival, that 1s, 15 to 20 microseconds after the shock arrived. For
two shots the gages survived for longer times. No extremely large stresses
were measured on these shots (see Figures 8 and 10). The parallel gages
showed lower initial stress levels than the perpendicular gages (see Fig-
. ures 6 and 8). This could result from a nonhydrodynamic stress field or
from an off center jet path., These shots also had RHA ocover plates which
wipe off the fastest part of the jet.

The framing camera photographs olearly show that fracture ocourred
around the gages before the arrival of the penetrating jet. This was
caused by interaotion with the leading shock wave which was formed when thse
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Figure 14, TFraming Camera Frames from Test No. 8. Time between frames is 2
microseconds. The dark part of the gage slot is 16 um wide.
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Figure 15, Framing Camera Frames from Test No. 10. Time between frames is
1.33 wicroseconds. Fiducial marks are spaced 25 mm apart,
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jet impacted the cover plate. There was a delay of about 3 mieroseconds
after shock arrival before c¢racking was seen at the gage. Data from the
film in Figure 15 was used to calculate the shock velceity, the initial
penetration velocity, and the glass fracture velocity. The measured values
are:

Penetration Velocity = 2.57 km/s

2.10 km/s

Fracture Velocity

Shock Velocity 5.90 km/s.

"

The wave profiles determined with the stress gages were difficult to
interpret when compared to the high speed framing camera photographs. For
instance, at least two shock waves are evident in the photographs of the
glass in Test No. 8 where the cover plate consisted of 25.4 mm of RHA and
25.4 mm of PMMA. The first wave was caused by the original jet impact at
the RHA surface and the second (probably) by the impact of the jet reaching
the PMMA-glass interface. In the steel, the shock velocity was higher than
the penetration velocity, whereas, in the PMMA the opposite was true., The
jet reached the glass interface approximatecly 2.2 microseconds after the
shock and accounts for the photographic results. The stress profile also
showed a two wave structure but the spacing was 7 microseconds, A cover
plate of PMMA 50.8 mm thick was used in Test no. 10. The photographs show
a double wave structure but in this case the second shock is much weaker
than for Test No. 8., Couwpare Figures 14 and 15. In the PMMA, the penetra-
tion velocity was higher than the shock velocity, and the jet tip arrived
at the PMMA-glass interface before the shock. The jet impact produced a
shock in the glass after which the fellowing shock in the PMMA entered the
glass and caused the double wave structure of the photographs. The photo-
graphs of Test No. 8, Figure 14, also show a weak third shock which can be
ageribed to the same causes.

The stress profiles of Figures 8 and 9 do not explicitly show these
waves. This is probably due to the reasons stated sarlier and in the case
of Test No. 8 also due to the fact that the gage was loaded side-on and the
stress waves took 0.8 microseconds to travel over the actlve gage length.
Nevertheless, information on representative stress levels and times were
obtained. Levels much higher than those msasured were not in evidence and
would have been detected. ULower levels would have been suspeat around such
an energetic process as shaped-charge Jjet penetration., It is believed that
strain-compensated stress gages are essential in making this kind of
measurement. Rellable measurements 3 to U microseconds after the arrival
of the stress wave would have been impossible without their use.

V. CONCLUSIONS

The following conclusions were drawn from the experience gained in
applying stress gage teohnology to the measurement of stress during shaped-
charge jet penetration in glass, and from the combined photographic and
stress results of this study.
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First, the stress profiles measured were limited by both the mechani-
cal and electrical response of the instrumentation, Electrical response
could be most easily improved but would not materially enhance the measure-
ments unless better packaging or other type of protection for the stress
gages is devised.

Second, the stress measurements, with their shortcomings, were of
sufficient quaiity to indlcate stress levels in the immediate vieinity of a
penetrating jet. It should be pointed out that the placement of the stress
gages coincided with existing interfaces in the glass targets., The photo-
graphic results indicate that these interfaces influence the penetration by
initiating cracking before penetration occurs. Insertion of foil stress
Zag~s in monolithic glass or ceramics would be impossible without creating
interfaces for nucleation of fracture, thereby, influenciag the penetration
aud the measurements.

As a ccrollary to the previous zonclusion, and as stated earlier,
strain-compensated stress gages are essential to satisfactory measurements
in these kinds of materials,

Third, although higher stress levels than those measured in these
experiments must be present at the Jjet-glass penetration interface, they
will te difficult, if not impossible to measure with foil stress gages.
Studying this interaction area in more suitable materials such as metals,
where fracture does not constitute such a large part of the failure
mechanisms, is possible with these gages. Future progress in measuring
stress in glass or ceramics under shaped-charge attack will probably not
come from foll stress gage technology. This statement is probably just as
true for kinetic energy penetration in these materials,

Fourth, the information presented here can be used in analysis or
design considerations for armor or anti-armor applications. The stress
measurenents can be used to verify analysis which can infer stress levels
in inaccessible locations in a target. The photographic results determined
some of the phenomenology of shaped-charge jet penetration in layered glass
by identifying both the location and temporal history of the material
failure,
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